If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+24+8=0
We add all the numbers together, and all the variables
-4.9t^2+32=0
a = -4.9; b = 0; c = +32;
Δ = b2-4ac
Δ = 02-4·(-4.9)·32
Δ = 627.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{627.2}}{2*-4.9}=\frac{0-\sqrt{627.2}}{-9.8} =-\frac{\sqrt{}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{627.2}}{2*-4.9}=\frac{0+\sqrt{627.2}}{-9.8} =\frac{\sqrt{}}{-9.8} $
| 9x+153=18x | | 11/2x=23/40 | | 115=x+5 | | 4=4r+7 | | 5=2a+8 | | 6=3f+15 | | 7c+1=14 | | 2x-7+4+x=21 | | 6a-13=2 | | 2=7r+10 | | 5=5n+10 | | 12x+5=|| | | x+2x-7=4 | | 48÷x=60÷100 | | 34-2y=4 | | X^2+x2=115 | | 2x-7-4=x | | 2x-7=4-x | | 50=3(x+80) | | 3=3(x+80) | | 15x4=12x5=60 | | 3yy=7 | | 12÷a=3 | | 10-6x+5(x^2)=0 | | Z3+9i=0 | | 8x+82=122 | | (7x)°=60°+(5x)° | | (7x)°+(5x)°=60° | | 5(2e-4)=10 | | 6y+1/3+1=y-3-6 | | 5t+43=28 | | 8x+5x=50 |